生产问题解决了,是时候开始想想主板上该放哪些部件了。我并不很在乎这块主板的实际用处,相对于用处而言,整个项目更是一个学习的过程。为了降低成本,主板的尺寸要小。这意味着不会为其他额外的接口预留空间,比如:以太网,串口或者SD卡。 除了处理器和RAM外,其他必需的部件是:大内存,电压调整器,以及处理芯片重置的监控电路。处理器可以从NAND启动,但是以防万一我决定为引导装载程序加入Dataflash(数据闪存),虽然最终会很少被用到。对于大内存而言,NAND是一个很好的选择因为他容量大又便宜。在BGA包中加入会更便宜些,但我已经被两个BGA包折腾的够呛了,所以我决定在一个48引脚的TSOP(薄型小尺寸封装)包里面使用4GB的NAND。连接各个组件在处理器的清单表中已经解释的很好了,但是在上千页的文档中要找到全部的细节还是很难的。Atmel 也发布了一个试用板的原理图,在设计主板时会很有帮助。 DDR2 引线空间应该有一定的自由度。正常的引线应该长度合适,有可控的阻抗和可以终止或者串联电阻。在开发板的参考设计中,所有DDR2的信号使用了串联电阻。我没有足够的空间放置他们,所以我决定暂且放着不管。阻抗也不是50欧姆,因为我必须使用小一些的引线来填充其他的空间。我希望的是,因为RAM更靠近处理器,就算缺少串联电阻箱或者阻抗不匹配,关系也不大。所有从CPU到RAM的连线大约是25mm长。通常的经验是:如果引线的长度要超过信号波长的10%时,转换线的影响应该被考虑进去。这种情况意味着频率大约在1 GHz以上。RAM的时钟频率只有133 MHz, 甚至头几个谐波还在1 GHz以下,这预示着应该会正常工作。为了保证可行,我几乎完全匹配了引线的长度,但这也许不是必须的。 供电有些复杂。处理器核心的电压是1伏特,RAM需要1.8伏特, NAND需要3.3 伏特。因为从USB输入电压是5伏特,主板需要有三种不同的电压适配器。正常情况下比较好的做法是:在主板上为电力供应保留一层并且保持它与信号脱离,来降低电力供应的阻抗,但是主板只有4层,而且其中一层要用于做底板。这意味着只有两层留给做信号处理,这显示不够。所以我没有单独拿出一层来供电,而是在不同的层里为不同的供电做了一些挡板。 对于USB供电的应用,线形调整器的电力损失在最坏的情况下太大了些,所以我决定用3.3伏特的调整器作为一个更有效的可切换开关的调整器。1.0伏特和1.8伏特的调整期是一个以3.3伏特作为输入电压的线性调整器。因为线形调整器的损失决定于输入和输出电压的差,所以使用3.3伏特的电压比5伏特的电压提高了效率。 电路图。PDF PCB布局,尚未焊锡。 焊接
|