Opteron支持-消费级的64位Linux
另一个在2.4.x开发环节就已经并入但这里仍然值得提及的是对AMD Opteron芯片(基于AMD64体系结构)的支持。Opteron向后与Intel-clone的处理器兼容,并且,甚至可能得到微软的支持。是它还 是Intel的Itanium家族的某一成员成为64位消费级产品的事实标准现在还很难下定论。 尽管2.4系列内核的后期版本已经可以在该芯片上运行,但作为产品应用仍受到了很大限制。对高端用户来说,最严重的问题是,每个应用程序的RAM的使用都被限制在512MB以内。另一方面,新内核对在该平台上运行x86(32位)的程序的支持得到了改进。 子体系结构(Subarchitecture)支持 Linux 2.6除了对许多新的处理器体系结构外,还包含了一个称为子体系结构(Subarchitecture)的新概念。以前,Linux通常假设处理器和其他 硬件是配套的。也就是说,i386系列处理器只会在PC/AT服务器上使用。这条针对i386的假设在Linux 2.4中就被打破,因为i386的额外支持使其可以在SGI的视频工作站(Visual Workstation)中使用。(事实上,在其他非i386体系结构上,这个假设早被打破了。比如,m68k很早就支持Amiga, Michintosh等平台。)Linux 2.6对于此最大的变化就是,让这个特性以及概念成为标准,以便所有的体系结构都可以用相似而健全的方法来处理,以便更清晰地划分模块。 标准的确立使得i386可以运用于两个新的平台。第一个是NCR的Voyager体系。这是一个对称多处理器(SMP)系统(在Intel的 MP规范标准确定之前就已经开发出来了),它支持多达32个486-686的处理器配置。实际采取这种体系结构的产品处理器的配置数目要相对少一些,而且 目前并不是所有的型号都得到了Linux的支持(最早的就不支持)。第二种得到最新支持的体系结构是更为广泛使用的由NEC开发的PC-9800平台,它 曾是日本市场占统治地位的PC平台,一直到最近几年。最初的PC-9800装载的是8086处理器,最终发展到奔腾级处理器和SMP支持。(当然, Linux对它的支持局限在386以上。)尽管在美国它完全不为人所知,微软的Windows 95之前的版本曾移植到这个平台上。该平台由于生产商对标准PC的偏爱,生产已经中止。 Linux对差异细微的硬件类型支持的形式化,使得操作系统能更容易的移植到其他平台上,比如移植到专为存储设计的硬件或者是使用在工业领域 的主流处理器。需要澄清的是,子体系结构也不是任何时候都管用的,它能够发挥作用是因为这些可移植的系统非常底层构件(比如IRQ路由)有或多或少的不 同。比起在X-box上运行Linux的差别来说,驱动程序等相对小的差别还不足以把它们从传统的i386系统中分开。Linux对X-box的支持,就 不是子体系结构的问题。 |