设为首页收藏本站

LUPA开源社区

 找回密码
 注册
文章 帖子 博客
LUPA开源社区 首页 业界资讯 开源资讯 查看内容

DARPA慷慨解囊的背后:Python与大数据的火花

2013-3-29 11:03| 发布者: joejoe0332| 查看: 4519| 评论: 0|原作者: 编译/仲浩 审校/王旭东|来自: InformationWeek

摘要:   据 InformationWeek近日的一则消息显示,DARPA(美国国防高级研究计划局)将给分析公司 Continuum Analytics投资300万美元,用于开发Python的数据分析和处理库。这笔资金来自其将在四年内投资1亿美元来改善大数 ...

  据 InformationWeek近日的一则消息显示,DARPA(美国国防高级研究计划局)将给分析公司 Continuum Analytics投资300万美元,用于开发Python的数据分析和处理库。这笔资金来自其将在四年内投资1亿美元来改善大数据技术的XDATA项目,这个项目旨在“开 用于分析国防活动中海量面向任务信息的 计算技术和软件工具”。

  Continuum Analytics将致力Blaze和Bokeh库的开发:Blaze用于科学计算,而Bokeh则是一个可视化系统。

  • 其中,Blaze将同时扩展现有的数学计算库NumPy科学计算库SciPy,使其更适应大数据库技术。Blaze将聚焦在内核外处理超过系统内存容量的大型数据集,并同时支持分布式数据和流数据。
  • 而Bokeh则是一个用于大数据可视化的Python库,Continuum称之为用于大型数据集的“可扩展、交互式以及易于使用的可视化系统”。Bokeh将整合许多可视化技术,将包含Stencil可视化模型和Grammar of Graphics。

 

  Python的运行效率可以用“低下”来形容了,那么究竟又是什么让它与大数据擦出了火花?首先要先看一下Python语言自身的优势

  1. 易于学习的Python

  众所周知,大多数的大数据分析工作都不是开发者在做,这样易于学习的Python就有了被Continuum Analytics与DARPA同时看重的理由。就像该公司董事长Peter Wang说:“如果他们可以学习一门简单的语言,他们将不需要额外的软件开发部门去参与数据分析。”

  2. 解释性语言Python

  基于解释语言的特性,使用Python进行开发无疑可以数倍的提升编码效率;不到C++/Java一半的代码行将大幅度减少开发过程和维护阶段的工作量,相信不会被大部分开发者讨厌。

  上文说到Python受开发者喜爱的两个方面:易于学习和高效的编码效率;然而作为解释性语言,Python的运行效率必然不会很快,而快于Python几倍、甚至几十倍的语言也是一抓一大把,那么Python在海量的数据处理中还会具备优势吗?


酷毙

雷人

鲜花
1

鸡蛋

漂亮

刚表态过的朋友 (1 人)

  • 快毕业了,没工作经验,
    找份工作好难啊?
    赶紧去人才芯片公司磨练吧!!

最新评论

关于LUPA|人才芯片工程|人才招聘|LUPA认证|LUPA教育|LUPA开源社区 ( 浙B2-20090187 浙公网安备 33010602006705号   

返回顶部