| 概述Spark Streaming 支持多种实时输入源数据的读取,其中包括Kafka、flume、socket流等等。除了Kafka以外的实时输入源,由于我们的业务场景没有涉及,在此将不会讨论。本篇文章主要着眼于我们目前的业务场景,只关注Spark Streaming读取Kafka数据的方式。 Spark Streaming 官方提供了两种方式读取Kafka数据: 一是Receiver-based Approach。该种读取模式官方最先支持,并在Spark 1.2提供了数据零丢失(zero-data loss)的支持;一是Direct Approach (No Receivers)。该种读取方式在Spark 1.3引入。
 此两种读取方式存在很大的不同,当然也各有优劣。接下来就让我们具体剖解这两种数据读取方式。 一、Receiver-based Approach如前文所述,Spark官方最先提供了基于Receiver的Kafka数据消费模式。但会存在程序失败丢失数据的可能,后在Spark 1.2时引入一个配置参数spark.streaming.receiver.writeAheadLog.enable以规避此风险。以下是官方的原话: under default configuration, this approach can lose data under failures (see receiver reliability. To ensure zero-data loss, you have to additionally enable Write Ahead Logs in Spark Streaming (introduced in Spark 1.2). This synchronously saves all the received Kafka data into write ahead logs on a distributed file system (e.g HDFS), so that all the data can be recovered on failure.
 Receiver-based 读取方式Receiver-based的Kafka读取方式是基于Kafka高阶(high-level) api来实现对Kafka数据的消费。在提交Spark Streaming任务后,Spark集群会划出指定的Receivers来专门、持续不断、异步读取Kafka的数据,读取时间间隔以及每次读取offsets范围可以由参数来配置。读取的数据保存在Receiver中,具体StorageLevel方式由用户指定,诸如MEMORY_ONLY等。当driver 触发batch任务的时候,Receivers中的数据会转移到剩余的Executors中去执行。在执行完之后,Receivers会相应更新ZooKeeper的offsets。如要确保at least once的读取方式,可以设置spark.streaming.receiver.writeAheadLog.enable为true。具体Receiver执行流程见下图: 
 Receiver-based 读取实现Kafka的high-level数据读取方式让用户可以专注于所读数据,而不用关注或维护consumer的offsets,这减少用户的工作量以及代码量而且相对比较简单。因此,在刚开始引入Spark Streaming计算引擎时,我们优先考虑采用此种方式来读取数据,具体的代码如下:  
  def getKafkaInputStream(zookeeper: String,
                            topic: String,
                            groupId: String,
                            numRecivers: Int,
                            partition: Int,
                            ssc: StreamingContext): DStream[String] = {
    val kafkaParams = Map(
      ("zookeeper.connect", zookeeper),
      ("auto.offset.reset", "largest"),
      ("zookeeper.connection.timeout.ms", "30000"),
      ("fetch.message.max.bytes", (1024 * 1024 * 50).toString),
      ("group.id", groupId)
    )
    val topics = Map(topic -> partition / numRecivers)
    val kafkaDstreams = (1 to numRecivers).map { _ =>
      KafkaUtils.createStream[String, String, StringDecoder, StringDecoder](ssc,
        kafkaParams,
        topics,
        StorageLevel.MEMORY_AND_DISK_SER).map(_._2)
    }
    ssc.union(kafkaDstreams)
  }
 如上述代码,函数getKafkaInputStream提供了zookeeper,topic,groupId,numReceivers,partition以及ssc,其传入函数分别对应: zookeeper: ZooKeeper连接信息topic: Kafka中输入的topic信息groupId: consumer信息numReceivers: 打算开启的receiver个数, 并用来调整并发partition: Kafka中对应topic的分区数
 以上几个参数主要用来连接Kafka并读取Kafka数据。具体执行的步骤如下: Kafka相关读取参数配置,其中 zookeeper.connect即传入进来的zookeeper参数;auto.offset.reset设置从topic的最新处开始读取数据;zookeeper.connection.timeout.ms指zookeepr连接超时时间,以防止网络不稳定的情况;fetch.message.max.bytes则是指单次读取数据的大小;group.id则是指定consumer。指定topic的并发数,当指定receivers个数之后,但是由于receivers个数小于topic的partition个数,所以在每个receiver上面会起相应的线程来读取不同的partition。读取Kafka数据,numReceivers的参数在此用于指定我们需要多少Executor来作为Receivers,开多个Receivers是为了提高应用吞吐量。union用于将多个Receiver读取的数据关联起来
 Receiver-based 读取问题采用Reveiver-based方式满足我们的一些场景需求,并基于此抽象出了一些micro-batch、内存计算模型等。在具体的应用场景中,我们也对此种的方式做了一些优化: 防数据丢失。做checkpoint操作以及配置spark.streaming.receiver.writeAheadLog.enable参数;提高receiver数据吞吐量。采用MEMORY_AND_DISK_SER方式读取数据、提高单Receiver的内存或是调大并行度,将数据分散到多个Receiver中去。
 以上处理方式在一定程度上满足了我们的应用场景,诸如micro-batch以及内存计算模型等。但是同时因为这两方面以及其他方面的一些因素,导致也会出现各种情况的问题: 配置spark.streaming.receiver.writeAheadLog.enable参数,每次处理之前需要将该batch内的日志备份到checkpoint目录中,这降低了数据处理效率,反过来又加重了Receiver端的压力;另外由于数据备份机制,会受到负载影响,负载一高就会出现延迟的风险,导致应用崩溃。采用MEMORY_AND_DISK_SER降低对内存的要求。但是在一定程度上影响计算的速度单Receiver内存。由于receiver也是属于Executor的一部分,那么为了提高吞吐量,提高Receiver的内存。但是在每次batch计算中,参与计算的batch并不会使用到这么多的内存,导致资源严重浪费。提高并行度,采用多个Receiver来保存Kafka的数据。Receiver读取数据是异步的,并不参与计算。如果开较高的并行度来平衡吞吐量很不划算。Receiver和计算的Executor的异步的,那么遇到网络等因素原因,导致计算出现延迟,计算队列一直在增加,而Receiver则在一直接收数据,这非常容易导致程序崩溃。在程序失败恢复时,有可能出现数据部分落地,但是程序失败,未更新offsets的情况,这导致数据重复消费。
 为了回辟以上问题,降低资源使用,我们后来采用Direct Approach来读取Kafka的数据,具体接下来细说。 二、Direct Approach (No Receivers)区别于Receiver-based的数据消费方法,Spark 官方在Spark 1.3时引入了Direct方式的Kafka数据消费方式。相对于Receiver-based的方法,Direct方式具有以下方面的优势: Direct 读取方式Direct方式采用Kafka简单的consumer api方式来读取数据,无需经由ZooKeeper,此种方式不再需要专门Receiver来持续不断读取数据。当batch任务触发时,由Executor读取数据,并参与到其他Executor的数据计算过程中去。driver来决定读取多少offsets,并将offsets交由checkpoints来维护。将触发下次batch任务,再由Executor读取Kafka数据并计算。从此过程我们可以发现Direct方式无需Receiver读取数据,而是需要计算时再读取数据,所以Direct方式的数据消费对内存的要求不高,只需要考虑批量计算所需要的内存即可;另外batch任务堆积时,也不会影响数据堆积。其具体读取方式如下图: 
 Direct 读取实现Spark Streaming提供了一些重载读取Kafka数据的方法,本文中关注两个基于Scala的方法,这在我们的应用场景中会用到,具体的方法代码如下: 方法createDirectStream中,ssc是StreamingContext;kafkaParams的具体配置见Receiver-based之中的配置,与之一样;这里面需要指出的是fromOffsets,其用来指定从什么offset处开始读取数据。
 def createDirectStream[
    K: ClassTag,
    V: ClassTag,
    KD <: Decoder[K]: ClassTag,
    VD <: Decoder[V]: ClassTag,
    R: ClassTag] (
      ssc: StreamingContext,
      kafkaParams: Map[String, String],
      fromOffsets: Map[TopicAndPartition, Long],
      messageHandler: MessageAndMetadata[K, V] => R
  ): InputDStream[R] = {
    val cleanedHandler = ssc.sc.clean(messageHandler)
    new DirectKafkaInputDStream[K, V, KD, VD, R](
      ssc, kafkaParams, fromOffsets, cleanedHandler)
  }
 方法createDirectStream中,该方法只需要3个参数,其中kafkaParams还是一样,并未有什么变化,不过其中有个配置auto.offset.reset可以用来指定是从largest或者是smallest处开始读取数据;topic是指Kafka中的topic,可以指定多个。具体提供的方法代码如下:
 def createDirectStream[
    K: ClassTag,
    V: ClassTag,
    KD <: Decoder[K]: ClassTag,
    VD <: Decoder[V]: ClassTag] (
      ssc: StreamingContext,
      kafkaParams: Map[String, String],
      topics: Set[String]
  ): InputDStream[(K, V)] = {
    val messageHandler = (mmd: MessageAndMetadata[K, V]) => (mmd.key, mmd.message)
    val kc = new KafkaCluster(kafkaParams)
    val fromOffsets = getFromOffsets(kc, kafkaParams, topics)
    new DirectKafkaInputDStream[K, V, KD, VD, (K, V)](
      ssc, kafkaParams, fromOffsets, messageHandler)
  }
 在实际的应用场景中,我们会将两种方法结合起来使用,大体的方向分为两个方面: 应用启动。当程序开发并上线,还未消费Kafka数据,此时从largest处读取数据,采用第二种方法;应用重启。因资源、网络等其他原因导致程序失败重启时,需要保证从上次的offsets处开始读取数据,此时就需要采用第一种方法来保证我们的场景。
 总体方向上,我们采用以上方法满足我们的需要,当然具体的策略我们不在本篇中讨论,后续会有专门的文章来介绍。从largest或者是smallest处读Kafka数据代码实现如下: 
private def getDirectStream(ssc: StreamingContext,
                            kafkaParams: Map[String, String],
                            topics: Set[String]): DStream[String] = {
  val kafkaDStreams = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](
    ssc,
    kafkaParams,
    topics
  )
  kafkaDStreams.map(_._2)
}
 程序失败重启的逻辑代码如下: 
private def getDirectStreamWithOffsets(ssc: StreamingContext,
                                       kafkaParams: Map[String, String],
                                       fromOffsets: Map[TopicAndPartition, Long]): DStream[String] = {
  val kfkData = try {
    KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder, String](
      ssc,
      kafkaParams,
      fromOffsets,
      (mmd: MessageAndMetadata[String, String]) => mmd.message()
    )
  } catch { 
    case _: Exception =>
    val topics = fromOffsets.map { case (tap, _) =>
      tap.topic
    }.toSet
    getDirectStream(ssc, kafkaParams, topics)
  }
  kfkData
}
 代码中的fromOffsets参数从外部存储获取并需要处理转换,其代码如下: val fromOffsets = offsets.map { consumerInfo =>
  TopicAndPartition(consumerInfo.topic, consumerInfo.part) -> consumerInfo.until_offset
}.toMap
 该方法提供了从指定offsets处读取Kafka数据。如果发现读取数据异常,我们认为是offsets失败,此种情况去捕获这个异常,然后从largest处读取Kafka数据。 Direct 读取问题在实际的应用中,Direct Approach方式很好地满足了我们的需要,与Receiver-based方式相比,有以下几方面的优势: 降低资源。Direct不需要Receivers,其申请的Executors全部参与到计算任务中;而Receiver-based则需要专门的Receivers来读取Kafka数据且不参与计算。因此相同的资源申请,Direct 能够支持更大的业务。
 降低内存。Receiver-based的Receiver与其他Exectuor是异步的,并持续不断接收数据,对于小业务量的场景还好,如果遇到大业务量时,需要提高Receiver的内存,但是参与计算的Executor并无需那么多的内存。而Direct 因为没有Receiver,而是在计算时读取数据,然后直接计算,所以对内存的要求很低。实际应用中我们可以把原先的10G降至现在的2-4G左右。鲁棒性更好。Receiver-based方法需要Receivers来异步持续不断的读取数据,因此遇到网络、存储负载等因素,导致实时任务出现堆积,但Receivers却还在持续读取数据,此种情况很容易导致计算崩溃。Direct 则没有这种顾虑,其Driver在触发batch 计算任务时,才会读取数据并计算。队列出现堆积并不会引起程序的失败。
 至于其他方面的优势,比如 简化并行(Simplified Parallelism)、高效(Efficiency)以及强一致语义(Exactly-once semantics)在之前已列出,在此不再介绍。虽然Direct 有以上这些优势,但是也存在一些不足,具体如下: 提高成本。Direct需要用户采用checkpoint或者第三方存储来维护offsets,而不像Receiver-based那样,通过ZooKeeper来维护Offsets,此提高了用户的开发成本。监控可视化。Receiver-based方式指定topic指定consumer的消费情况均能通过ZooKeeper来监控,而Direct则没有这种便利,如果做到监控并可视化,则需要投入人力开发。
 总结本文介绍了基于Spark Streaming的Kafka数据读取方式,包括Receiver-based以及Direct两种方式。两种方式各有优劣,但相对来说Direct 适用于更多的业务场景以及有更好的可护展性。至于如何选择以上两种方式,除了业务场景外也跟团队相关,如果是应用初期,为了快速迭代应用,可以考虑采用第一种方式;如果要深入使用的话则建议采用第二种方式。本文只介绍了两种读取方式,并未涉及到读取策略、优化等问题。这些会在后续的文章中详细介绍。 |