设为首页收藏本站

LUPA开源社区

 找回密码
 注册
文章 帖子 博客
LUPA开源社区 首页 业界资讯 软件追踪 查看内容

Apache Spark 2.0.0发布,APIs更新

2016-7-28 22:33| 发布者: joejoe0332| 查看: 864| 评论: 0|原作者: oschina|来自: oschina

摘要: Apache Spark 2.0.0 发布了,Apache Spark 是一种与 Hadoop 相似的开源集群计算环境,但是两者之间还存在一些不同之处,这些有用的不同之处使 Spark 在某些工作负载方面表现得更加优越,换句话说,Spark 启用了内存 ...

Apache Spark 2.0.0 发布了,Apache Spark 是一种与 Hadoop 相似的开源集群计算环境,但是两者之间还存在一些不同之处,这些有用的不同之处使 Spark 在某些工作负载方面表现得更加优越,换句话说,Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。

该版本主要更新APIs,支持SQL 2003,支持R UDF ,增强其性能。300个开发者贡献了2500补丁程序。

Apache Spark 2.0.0 APIs更新记录如下:

  • Unifying DataFrame and Dataset: In Scala and Java, DataFrame and Dataset have been unified, i.e. DataFrame is just a type alias for Dataset of Row. In Python and R, given the lack of type safety, DataFrame is the main programming interface.

  • SparkSession: new entry point that replaces the old SQLContext and HiveContext for DataFrame and Dataset APIs. SQLContext and HiveContext are kept for backward compatibility.

  • A new, streamlined configuration API for SparkSession

  • Simpler, more performant accumulator API

  • A new, improved Aggregator API for typed aggregation in Datasets

Apache Spark 2.0.0 SQL更新记录如下:

  • A native SQL parser that supports both ANSI-SQL as well as Hive QL

  • Native DDL command implementations

  • Subquery support, including

    • Uncorrelated Scalar Subqueries

    • Correlated Scalar Subqueries

    • NOT IN predicate Subqueries (in WHERE/HAVING clauses)

    • IN predicate subqueries (in WHERE/HAVING clauses)

    • (NOT) EXISTS predicate subqueries (in WHERE/HAVING clauses)

  • View canonicalization support

一些新特性:

  • Native CSV data source, based on Databricks’ spark-csv module

  • Off-heap memory management for both caching and runtime execution

  • Hive style bucketing support

  • Approximate summary statistics using sketches, including approximate quantile, Bloom filter, and count-min sketch.

性能增强:

  • Substantial (2 - 10X) performance speedups for common operators in SQL and DataFrames via a new technique called whole stage code generation.

  • Improved Parquet scan throughput through vectorization

  • Improved ORC performance

  • Many improvements in the Catalyst query optimizer for common workloads

  • Improved window function performance via native implementations for all window functions

  • Automatic file coalescing for native data sources

更多发布信息,可查看发布说明

下载地址:http://spark.apache.org/downloads.html

酷毙

雷人

鲜花

鸡蛋

漂亮
  • 快毕业了,没工作经验,
    找份工作好难啊?
    赶紧去人才芯片公司磨练吧!!

最新评论

关于LUPA|人才芯片工程|人才招聘|LUPA认证|LUPA教育|LUPA开源社区 ( 浙B2-20090187 浙公网安备 33010602006705号   

返回顶部