9. Weka
Weka是新西兰Waikato大学开发的,收集一组专门为数据挖掘设计的Java机器学习算法。这组GNU得到 GPLv3许可的集有一个包系统扩展其功能,有官方和非官方包两种。Weka甚至还有专门一本书解释其软件和实战技术,所以那些想要在概念和软件上取得优 势的开发者可以关注下。 虽然Weka并不是专门针对Hadoop用户,但是Weka的最新版本的一组封装器可以用于Hadoop。请注意,它还不能支持Spark,只有MapReduc。Clojure用户还可以通过 Clj-ml 库利用Weka。 Project: Weka 10. CUDA-Convnet
现在大多数人都知道GPU在处理某些问题上的速度比CPU快。但应用程序不会自动利用GPU的加速功能;他们必须明确通过程序写入。CUDA-Convne是一个神经网络应用程序机器学习库,用C++编写来开发Nvidia的CUDA GPU处理技术。对于那些使用Python而不是C++用户,由此产生的神经网络可以保存为Python pickle对象,因此可以从Python存取。 注意,原始版本的项目不再被开发,但是已经被重组为CUDA-Convnet2,支持多个GPU和Kepler-generation GPU。与之类似的项目Vulpes,已经用F#编写,并且通常和.Net框架一起使用。 Project: CUDA-Convnet 11. ConvNetJS
顾名思义,ConvNetJS 是一个基于 js 的深度学习 library,可以让你在浏览器中训练深度网络。NPM版本也可用于那些使用Node.js的用户,并且这个库也是为合理使用 JavaScript的异步性而设计,例如,一旦他们完成训练操作可以给出一个回调函数来执行。里面还包含大量的演示案例。 Project:
ConvNetJS
转自:http://www.csdn.net/article/2014-12-05/2822967/1 |