设为首页收藏本站

LUPA开源社区

 找回密码
 注册
文章 帖子 博客
LUPA开源社区 首页 业界资讯 技术文摘 查看内容

六款值得推荐的数据挖掘得力助手

2014-10-14 12:07| 发布者: joejoe0332| 查看: 2035| 评论: 0|原作者: Ayleeliu|来自: CSDN CODE

摘要: 当今这个时代,说数据就是金钱一点都不夸张。随着向一个基于应用的领域过渡,数据则呈现出了指数级增长。然而,大部分数据是非结构化的,因此它需要一个程序和方法来从中提取有用信息,并且将其转换为可理解、可用的 ...

  当今这个时代,说数据就是金钱一点都不夸张。随着向一个基于应用的领域过渡,数据则呈现出了指数级增长。然而,大部分数据是非结构化的,因此它需要一个程序和方法来从中提取有用信息,并且将其转换为可理解、可用的形式。



  而在数据挖掘任务中,有大量的工具可供使用,比如采用人工智能、机器学习,以及其他技术等来提取数据。


  以下为您推荐六款强大的开源数据挖掘工具:


1、RapidMiner

  该工具是用 Java 语言编写的,通过基于模板的框架提供先进的分析技术。该款工具最大的好处就是,用户无需写任何代码。它是作为一个服务提供,而不是一款本地软件。值得一提的是,该工具在数据挖掘工具榜上位列榜首。

  另外,除了数据挖掘,RapidMiner 还提供如数据预处理和可视化、预测分析和统计建模、评估和部署等功能。更厉害的是它还提供来自 WEKA(一种智能分析环境)和 R 脚本的学习方案、模型和算法。

  RapidMiner 分布在 AGPL 开源许可下,可以从 SourceForge 上下载。SourceForge 是一个开发者进行开发管理的集中式场所,大量开源项目在此落户,其中就包括维基百科使用的 MediaWiki。


2、WEKA

  WEKA 原生的非 Java 版本主要是为了分析农业领域数据而开发的。该工具基于 Java 版本,是非常复杂的,并且应用在许多不同的应用中,包括数据分析以及预测建模的可视化和算法。与 RapidMiner 相比优势在于,它在 GNU 通用公共许可证下是免费的,因为用户可以按照自己的喜好选择自定义。

  WEKA 支持多种标准数据挖掘任务,包括数据预处理、收集、分类、回归分析、可视化和特征选取。添加序列建模后,WEKA 将会变得更强大,但目前不包括在内。


3、R-Programming

  如果我告诉你R项目,一个 GNU 项目,是由 R(R-programming简称,以下统称R)自身编写的,你会怎么想?它主要是由 C 语言和 FORTRAN 语言编写的,并且很多模块都是由 R 编写的,这是一款针对编程语言和软件环境进行统计计算和制图的免费软件。

  R语言被广泛应用于数据挖掘,以及开发统计软件和数据分析中。近年来,易用性和可扩展性也大大提高了 R 的知名度。除了数据,它还提供统计和制图技术,包括线性和非线性建模,经典的统计测试,时间序列分析、分类、收集等等。



酷毙

雷人

鲜花

鸡蛋

漂亮
  • 快毕业了,没工作经验,
    找份工作好难啊?
    赶紧去人才芯片公司磨练吧!!

最新评论

关于LUPA|人才芯片工程|人才招聘|LUPA认证|LUPA教育|LUPA开源社区 ( 浙B2-20090187 浙公网安备 33010602006705号   

返回顶部