设为首页收藏本站

LUPA开源社区

 找回密码
 注册
文章 帖子 博客
LUPA开源社区 首页 业界资讯 技术文摘 查看内容

国外程序员整理的机器学习资源大全

2014-7-22 12:03| 发布者: joejoe0332| 查看: 8970| 评论: 0|原作者: toolate|来自: 伯乐在线

摘要: 本列表选编了一些机器学习领域牛B的框架、库以及软件(按编程语言排序)。


Lua


通用机器学习

  • Torch7

    • cephes —Cephes数学函数库,包装成Torch可用形式。提供并包装了超过180个特殊的数学函数,由Stephen L. Moshier开发,是SciPy的核心,应用于很多场合。

    • graph —供Torch使用的图形包。

    • randomkit—从Numpy提取的随机数生成包,包装成Torch可用形式。

    • signal —Torch-7可用的信号处理工具包,可进行FFT, DCT, Hilbert, cepstrums, stft等变换。

    • nn —Torch可用的神经网络包。

    • nngraph —为nn库提供图形计算能力。

    • nnx—一个不稳定实验性的包,扩展Torch内置的nn库。

    • optim—Torch可用的优化算法库,包括 SGD, Adagrad, 共轭梯度算法, LBFGS, RProp等算法。

    • unsup—Torch下的非监督学习包。提供的模块与nn(LinearPsd, ConvPsd, AutoEncoder, …)及独立算法 (k-means, PCA)等兼容。

    • manifold—操作流形的包。

    • svm—Torch的支持向量机库。

    • lbfgs—将liblbfgs包装为FFI接口。

    • vowpalwabbit —老版的vowpalwabbit对torch的接口。

    • OpenGM—OpenGM是C++编写的图形建模及推断库,该binding可以用Lua以简单的方式描述图形,然后用OpenGM优化。

    • sphagetti —MichaelMathieu为torch7编写的稀疏线性模块。

    • LuaSHKit —将局部敏感哈希库SHKit包装成lua可用形式。

    • kernel smoothing —KNN、核权平均以及局部线性回归平滑器

    • cutorch—torch的CUDA后端实现

    • cunn —torch的CUDA神经网络实现。

    • imgraph—torch的图像/图形库,提供从图像创建图形、分割、建立树、又转化回图像的例程

    • videograph—torch的视频/图形库,提供从视频创建图形、分割、建立树、又转化回视频的例程

    • saliency —积分图像的代码和工具,用来从快速积分直方图中寻找兴趣点。

    • stitch —使用hugin拼合图像并将其生成视频序列。

    • sfm—运动场景束调整/结构包

    • fex —torch的特征提取包,提供SIFT和dSIFT模块。

    • OverFeat—当前最高水准的通用密度特征提取器。

  • Numeric Lua

  • Lunatic Python

  • SciLua

  • Lua – Numerical Algorithms

  • Lunum

演示及脚本

Matlab

计算机视觉

  • Contourlets —实现轮廓波变换及其使用函数的MATLAB源代码

  • Shearlets—剪切波变换的MATLAB源码

  • Curvelets—Curvelet变换的MATLAB源码(Curvelet变换是对小波变换向更高维的推广,用来在不同尺度角度表示图像。)

  • Bandlets—Bandlets变换的MATLAB源码

自然语言处理

  • NLP —一个Matlab的NLP库

通用机器学习

数据分析/数据可视化

  • matlab_gbl—处理图像的Matlab包

  • gamic—图像算法纯Matlab高效实现,对MatlabBGL的mex函数是个补充。

.NET

计算机视觉

  • OpenCVDotNet —包装器,使.NET程序能使用OpenCV代码

  • Emgu CV—跨平台的包装器,能在Windows, Linus, Mac OS X, iOS, 和Android上编译。

自然语言处理

  • Stanford.NLP for .NET —斯坦福大学NLP包在.NET上的完全移植,还可作为NuGet包进行预编译。

通用机器学习

  • Accord.MachineLearning —支持向量机、决策树、朴素贝叶斯模型、K-means、高斯混合模型和机器学习应用的通用算法,例如:随机抽样一致性算法、交叉验证、网格搜索。这个包是Accord.NET框架的一部分。

  • Vulpes—F#语言实现的Deep belief和深度学习包,它在Alea.cuBase下利用CUDA GPU来执行。

  • Encog —先进的神经网络和机器学习框架,包括用来创建多种网络的类,也支持神经网络需要的数据规则化及处理的类。它的训练采用多线程弹性传播。它也能使用GPU加快处理时间。提供了图形化界面来帮助建模和训练神经网络。

  • Neural Network Designer —这是一个数据库管理系统和神经网络设计器。设计器用WPF开发,也是一个UI,你可以设计你的神经网络、查询网络、创建并配置聊天机器人,它能问问题,并从你的反馈中学习。这些机器人甚至可以从网络搜集信息用来输出,或是用来学习。

数据分析/数据可视化

  • numl —numl这个机器学习库,目标就是简化预测和聚类的标准建模技术。

  • Math.NET Numerics— Math.NET项目的数值计算基础,着眼提供科学、工程以及日常数值计算的方法和算法。支持 Windows, Linux 和 Mac上的 .Net 4.0, .Net 3.5 和 Mono ,Silverlight 5, WindowsPhone/SL 8, WindowsPhone 8.1 以及装有 PCL Portable Profiles 47 及 344的Windows 8, 装有 Xamarin的Android/iOS 。

  • Sho — Sho是数据分析和科学计算的交互式环境,可以让你将脚本(IronPython语言)和编译的代码(.NET)无缝连接,以快速灵活的建立原型。这个环 境包括强大高效的库,如线性代数、数据可视化,可供任何.NET语言使用,还为快速开发提供了功能丰富的交互式shell。


酷毙

雷人
1

鲜花

鸡蛋

漂亮

刚表态过的朋友 (1 人)

  • 快毕业了,没工作经验,
    找份工作好难啊?
    赶紧去人才芯片公司磨练吧!!

最新评论

关于LUPA|人才芯片工程|人才招聘|LUPA认证|LUPA教育|LUPA开源社区 ( 浙B2-20090187 浙公网安备 33010602006705号   

返回顶部