DataTorrent是一个实时的流式处理和分析平台,它每秒可以处理超过10亿个实时事件。 与Twitter平均每秒大约6000条微博相比,最近发布的DataTorrent 1.0似乎已经超出了需求,它每秒可以处理超过10亿个实时事件。他们在一个包含37个节点的集群上进行了测试,每个节点256GB内存、12核超线程CPU。在CPU达到饱和之前,DataTorrent声称已经实现了线性扩展,而CPU达到饱和时处理速度为每秒16亿个事件。Phu Hoang是DataTorrent的联合创始人和CEO,他告诉InfoQ,在同样的硬件上,他们的解决方案在性能上比Apache Spark要高“好几个数量级”。 DataTorrent基于Hadoop 2.x构建,是一个实时的、有容错能力的数据流式处理和分析平台,它使用本地Hadoop应用程序,而这些应用程序可以与执行其它任务,如批处理,的应用程序共存。该平台的架构如下图所示: StrAM(Streaming Application Master)是一个本地的YARN Application Master,负责管理将要在Hadoop集群上执行的逻辑DAG(Directed Acyclic Graph),包括资源分配、分区、扩展、调度、Web服务、运行时更改、统计、SLA执行、安全等等。 在架构示意图的上层,用户应用程序作为已连接的算子和/或应用程序模板存在。算子的示例有InputReceiver(模拟接收输入数据)、Average(针对指定维度的键计算数据平均值)、RedisAverageOutput(将计算好的平均值写入Redis数据存储)、SmtpAvgOperator(发送电子邮件警报)。这些算子是Malhar库的一部分,该库包含了超过400个这样的算子,并在GitHub上开源。用户可以根据需要编写其它算子。 我们问Hoang,是什么使DataTorrent比Spark更快:
据Hoang说,经验证,DataTorrent适用于“所有主要的Hadoop分发,既包括本地部署,也包括基于云的部署(前者如Cloudera、Hortonworks、MapR,后者如Amazon AWS和Google Cloud),这赋予了企业灵活性,使他们既可以更换Hadoop供应商,也可以无障碍地更改部署选项。” 虽然DataTorrent是一款商业应用程序,但它也带来了一个包含所有功能的免费层级,可以用于中小型应用程序。 |