这是一篇很难写的文章,因为我希望这篇文章能对学习者有所启发。我在空白页前坐下,并且问自己了一个很难的问题:什么样的库、课程、论文和书籍对于机器学习的初学者来说是最好的。 文章里到底写什么、不写什么,这个问题真的让我很烦恼。我必须把自己当做一个程序员和一个机器学习的初学者,站在这个角度去考虑最合适的资源。 我找出了每个类型中最适合的资源。如果你是一个真正的初学者,并且乐意于开始了解机器学习领域的相关知识,我希望,你可以在我的文章中找到有用的资料。我的建议是,从中挑出一件来,一本书或者是一个库,反复阅读或者认真学习所有的相关教程。挑出一个并且坚持学习,直到你完全掌握,再重新选择一个,重复这个学习过程。现在就让我们开始吧! Programming Libraries 编程库资源我是一个“学习要敢于冒险和尝试”观念的倡导者。这是我学习编程的方式,我相信很多人也是这样学习程序设计的。先了解你的能力极限,然后去拓展你的能力。如果你了解如何编程,可以将编程经验很快借鉴到深入学习机器学习上。在你实现一个实际的产品系统之前,你必须遵循一些规则、学习相关数学知识。 找到一个库并且仔细阅读相关文档,根据教程,开始尝试实现一些东西。下面列出的是开源的机器学习库中最好的几种。我认为,并不是他们中的每一种都适合用在你的系统中,但是他们是你学习、探索和实验的好材料。 你可以从一个由你熟悉的语言编写的库开始学习,然后再去学习其他功能强大的库。如果你是一个优秀的程序员,你会知道怎样从一种语言,简单合理地迁移到另一种语言。语言的逻辑都是相同的,只是语法和API稍有不同。
挑选出一个平台,并且在你实际学习机器学习的时候使用它。不要纸上谈兵,要去实践! Video Courses视频课程很多人都是通过视频资源开始接触机器学习的。我在YouTube和VideoLectures上看了很多于机器学习相关的视频资源。这样做的问题是,你可能只是观看视频而并不实际去做。我的建议是,你在观看视频的时候,应该多记笔记,及时后来你会抛弃你的笔记。同时,我建议你将学到的东西付诸实践。 坦白讲,我没有看见特别合适初学者的视频资源。视频资源都需要你掌握一定的线性代数、概率论等知识。Andrew Ng在斯坦福的讲解可能是最适合初学者的,下面是我推荐的一些视频资源。
|