Prismatic 其实用的是 Logistical Regression 的算法,这一算法相对成熟,不过依然有很多地方可以优化。他们甚至自行创建了分布式系统,而不是使用 Hadoop。事实上,目前诸多搜索引擎和社交网络的广告系统都是以 Logistical Regression 的算法为基础的,相关产品的体验和速度都非常棒。朴实的算法,花同样的时间去调参数,对产品已经足够了,因为用户是不会察觉准确率上百分之零点几的差别。 此外,每个人对人工智能都有自己的见解。比如,Peter Thiel 投资了 Machine Intelligence Research Institute——这个研究机构对于目前主流的机器学习算法不满,试图从交叉学科的角度,创建更接近人、更友好的智能。 历史不会重演,却常常惊人得相似。翻开 Yann LeCun 的简历,这并不是他第一次投身工业界。他曾经是 AT&T 实验室(Bell 实验室拆分后留在 AT&T 的部分)图像处理组的负责人,并试图硬件化人工神经网络,后来由于公司策略调整,整个研究组被裁,他才挪移到纽约大学任教,继续自己独树一帜的研究(曾赢得国防部的合同)。 这次,他终于等到了深度学习(deep learning)的复兴,接受了 Facebook 的工作邀约再次回归工业界。之所以会聘请 LeCun 等高校教授回到业界,是因为深度学习在实践中确实取得了效果,而公司之前也雇佣过这些教授麾下的学生,合作下来都很愉快。 谁也不知道深度学习是否会像其他算法一样进入瓶颈期。如何把深度学习运用到产品中,将产品智能化,提升用户体验——这越来越受到公司的关注。 |