设为首页收藏本站

LUPA开源社区

 找回密码
 注册
文章 帖子 博客
LUPA开源社区 首页 IT综合资讯 查看内容

互联网推荐系统漫谈

2013-10-10 14:04| 发布者: joejoe0332| 查看: 655| 评论: 0|原作者: geekpark.net|来自: geekpark.net

摘要:    读项亮的《推荐系统实践》后总结所得:算法虽然不能解决全部问题,但算法可以变得更人性化。网络就是社会,其实算法和人之间早已不那么泾渭分明了。  推荐系统这个东西其实在我们的生活中无处不在,比如我早 ...

  推荐系统的冷启动问题

  介绍了这么多类的推荐系统,最后说说推荐系统的一个主要问题:冷启动问题。具体分三种情况:如何给新用户做个性化推荐,如何将新物品推荐给用户,新网站在数据稀少的情况下如何做个性化推荐。

  对此也有相应的解决方案。对于新用户,首先可以根据其注册信息进行粗粒度的推荐,如年龄,性别,爱好等。另外也可以在新用户注册后为其提供一些内容,让他们反馈对这些内容的兴趣,再根据这些数据来进行推荐。这些内容需要同时满足热门和多样的要求。而对于新物品的推荐,可能就要从其内容数据上下功夫了。我们可以通过语义分析对物品抽取关键词并赋予权重,这种内容特征类似一个向量,通过向量之间的余弦相似度便可得出物品之间的相似度,从而进行推荐。这种内容过滤算法在物品(内容)更新较快的服务中得到大量应用,如新闻资讯类的个性化推荐。



  而在网站初建,数据不够多的情况下,可能就要先通过人工的力量来建立早期的推荐系统了。简单一点的,人工编辑热门榜单,高级一点的,人工分类标注。国外的个性化音乐电台Pandora就雇了一批懂计算机的音乐人来给大量音乐进行多维度标注,称之为音乐基因。有了这些初始数据,就可以方便地进行推荐了。国内的Jing.fm初期也是通过对音乐的物理信息,情感信息,社会信息进行人工分类,而后再通过机器学习和推荐算法不断完善,打造出了不一样的个性化电台。

  除了这些,利用社交网络平台已有的大量数据也是一个不错的方法,尤其是那些依托于其他SNS账号系统的服务。


  算法vs人

  有很多人怀疑推荐系统是否会让一个人关注的东西越来越局限,但看完这些你会觉得并非如此,多样性,新颖性和惊喜度也都是考察推荐系统的要素。而至于算法和人究竟哪个更重要的争论,我很赞同唐茶创始人李如一的一个观点:


在技术社群的讨论里,大家默认觉得让推荐算法变得更聪明、让软件变得更「智能」一定是好事。但人不能那么懒的。连「发现自己可能感兴趣的内容」这件事都要交给机器做吗?不要觉得我是Luddite。真正的技术主义者永远会把人放到第一位。


  我想补充的是,算法虽然不能解决全部问题,但算法可以变得更人性化。套用某人「网络就是社会」的论断,其实算法和人之间早已不那么泾渭分明了。


酷毙

雷人

鲜花

鸡蛋

漂亮
  • 快毕业了,没工作经验,
    找份工作好难啊?
    赶紧去人才芯片公司磨练吧!!

最新评论

关于LUPA|人才芯片工程|人才招聘|LUPA认证|LUPA教育|LUPA开源社区 ( 浙B2-20090187 浙公网安备 33010602006705号   

返回顶部