接口分解行为到可组合的单元,而不是显式的继承层次结构是一个Python没有解决好的问题,经常导致噩梦般的复杂的使用mixin。然而通过使用ABC模组模仿静态定义的接口可以缓解这个问题。 import heapq
import collections
class Heap(collections.Sized):
def __init__(self, initial=None, key=lambda x:x):
self.key = key
if initial:
self._data = [(key(item), item) for item in initial]
heapq.heapify(self._data)
else:
self._data = []
def pop(self):
return heapq.heappop(self._data)[1]
def push(self, item):
heapq.heappush(self._data, (self.key(item), item))
def len(self):
return len(self._data)from abc import ABCMeta, abstractmethod
class Eq(object):
__metaclass__ = ABCMeta
@classmethod
def __subclasshook__(cls, C):
if cls is Eq:
for B in C.__mro__:
if "eq" in B.__dict__:
if B.__dict__["eq"]:
return True
break
return NotImplemented
def eq(a, b):
if isinstance(a, Eq) and isinstance(b, Eq) and type(a) == type(b):
return a.eq(b)
else:
raise NotImplementedError
class Foo(object):
def eq(self, other):
return True
class Fizz(Foo):
pass
class Bar(object):
def __init__(self, val):
self.val = val
def eq(self, other):
return self.val == other.val
print eq(Foo(), Foo())
print eq(Bar(1), Bar(1))
print eq(Foo(), Bar(1))
print eq(Foo(), Fizz()) |
然后扩展这种类型的接口概念到多参数的函数,使得查询__dict__越来越可能发生,在组合的情况下很脆弱。问题的关键是分解所有的事情到单一类型不同的接口,当我们真正想要的是声明涵盖一组多类型的接口时。OOP中的这种缺点是 表达式问题的关键。 诸如Scala、Haskell和Rust这样的语言以trait和typeclass这样的形式提供该问题的解决方案。例如Haskell可以自动地为所有类型的交叉产品推导出微分方程。 instance (Floating a, Eq a) => Floating (Dif a) where
pi = C pi
exp (C x) = C (exp x)
exp (D x x') = r where r = D (exp x) (x' * r)
log (C x) = C (log x)
log p@(D x x') = D (log x) (x' / p)
sqrt (C x) = C (sqrt x)
sqrt (D x x') = r where r = D (sqrt x) (x' / (2 * r)) |
异步编程在这个主题下,我们还是有很多缝缝补补的解决方案,解决了部分的问题,但是引入了一整与常规Python背道而驰的套限制和模式。Gevent通过剪接底层C堆栈保持了Python自己的一致性。生成的API非常优雅,但是使得推理控制流和异常非常复杂。 import gevent
def foo():
print('Running in foo')
gevent.sleep(0)
print('Explicit context switch to foo again')
def bar():
print('Explicit context to bar')
gevent.sleep(0)
print('Implicit context switch back to bar')
gevent.joinall([
gevent.spawn(foo),
gevent.spawn(bar),
])
控制流展示在下面: 通过对标准库相当不优美的缝缝补补(monkey-patching),我们可以模仿Erlang式带有异步进入点和内部状态的actor行为: import gevent
from gevent.queue import Queue
from SimpleXMLRPCServer import SimpleXMLRPCServer
class Actor(object):
_export = [
'push',
]
def __init__(self, address):
self.queue = Queue()
self._serv = SimpleXMLRPCServer(address, allow_none=True, logRequests=False)
self.address = address
for name in self._export:
self._serv.register_function(getattr(self, name))
def push(self, thing):
self.queue.put(thing)
def poll(self):
while True:
print(self.queue.get())
def periodic(self):
while True:
print('PING')
gevent.sleep(5)
def serve_forever(self):
gevent.spawn(self.periodic)
gevent.spawn(self.poll)
self._serv.serve_forever()
def main():
from gevent.monkey import patch_all
patch_all()
serve = Actor(('', 8000))
serve.serve_forever() |
DSLsZ3工程是嵌在Python对象层的扩展API。用Z3的实例来解决N皇后问题可以被描述为Python表达式和扩展SMT来解决问题: from Z3 import *
Q = [ Int('Q_%i' % (i + 1)) for i in range(8) ]
# Each queen is in a column {1, ... 8 }
val_c = [ And(1 <= Q[i], Q[i] <= 8) for i in range(8) ]
# At most one queen per column
col_c = [ Distinct(Q) ]
# Diagonal constraint
diag_c = [ If(i == j,
True,
And(Q[i] - Q[j] != i - j, Q[i] - Q[j] != j - i))
for i in range(8) for j in range(i) ]
solve(val_c + col_c + diag_c)在Theano,SymPy,PySpark中的其它工程大量使用基于Python表达式的重载操作符的方式。 from sympy import Symbol
from sympy.logic.inference import satisfiable
x = Symbol('x')
y = Symbol('y')
satisfiable((x | y) & (x | ~y) & (~x | y)) |
参与翻译(4人):袁不语, 小panda, Garfielt, yale8848
本文转自:开源中国社区 [http://www.oschina.net]
本文标题:飞跃式发展的后现代 Python 世界
本文地址:http://www.oschina.net/translate/postmodern-python