图2 隔离对象的处理流图 Ring Ring是Swift最重要的组件,用于记录存储对象与物理位置间的映射关系。在涉及查询Account、Container、Object信息时,就需要查询集群的Ring信息。 Ring使用Zone、Device、Partition和Replica来维护这些映射信息。Ring中每个Partition在集群中都(默认)有3个Replica。每个Partition的位置由Ring来维护,并存储在映射中。Ring文件在系统初始化时创建,之后每次增减存储节点时,需要重新平衡一下Ring文件中的项目,以保证增减节点时,系统因此而发生迁移的文件数量最少。 原理 Swift用到的算法和存储理论并不复杂,主要有几下几个概念。 一致性哈希算法 Swift利用一致性哈希算法构建了一个冗余的可扩展的分布式对象存储集群。Swift采用一致性哈希的主要目的是在改变集群的Node数量时,能够尽可能少地改变已存在Key和Node的映射关系。 该算法的思路分为以下三个步骤。 首先计算每个节点的哈希值,并将其分配到一个0~232的圆环区间上。其次使用相同方法计算存储对象的哈希值,也将其分配到这个圆环上。随后从数据映射到的位置开始顺时针查找,将数据保存到找到的第一个节点上。如果超过232仍然找不到节点,就会保存到第一个节点上。 假设在这个环形哈希空间中存在4台Node,若增加一台Node5,根据算法得出Node5被映射在Node3和Node4之间,那么受影响的将仅是沿Node5逆时针遍历到Node3之间的对象(它们本来映射到Node4上)。其分布如图3所示。 图3 一致性哈希环结构 Replica 如果集群中的数据在本地节点上只有一份,一旦发生故障就可能会造成数据的永久性丢失。因此,需要有冗余的副本来保证数据安全。Swift中引入了Replica的概念,其默认值为3,理论依据主要来源于NWR策略(也叫Quorum协议)。 NWR是一种在分布式存储系统中用于控制一致性级别的策略。在Amazon的Dynamo云存储系统中,使用了NWR来控制一致性。其中,N代表同一份数据的Replica的份数,W是更新一个数据对象时需要确保成功更新的份数;R代表读取一个数据需要读取的Replica的份数。 公式W+R>N,保证某个数据不被两个不同的事务同时读和写;公式W>N/2保证两个事务不能并发写某一个数据。 在分布式系统中,数据的单点是不允许存在的。即线上正常存在的Replica数量为1的情况是非常危险的,因为一旦这个Replica再次出错,就可能发生数据的永久性错误。假如我们把N设置成为2,那么只要有一个存储节点发生损坏,就会有单点的存在,所以N必须大于2。N越高,系统的维护成本和整体成本就越高。工业界通常把N设置为3。例如,对于MySQL主从结构,其NWR数值分别是N= 2, W = 1, R = 1,没有满足NWR策略。而Swift的N=3, W=2, R=2,完全符合NWR策略,因此Swift系统是可靠的,没有单点故障。 Zone 如果所有的Node都在一个机架或一个机房中,那么一旦发生断电、网络故障等,都将造成用户无法访问。因此需要一种机制对机器的物理位置进行隔离,以满足分区容忍性(CAP理论中的P)。因此,Ring中引入了Zone的概念,把集群的Node分配到每个Zone中。其中同一个Partition的Replica不能同时放在同一个Node上或同一个Zone内。注意,Zone的大小可以根据业务需求和硬件条件自定义,可以是一块磁盘、一台存储服务器,也可以是一个机架甚至一个IDC。 Weight Ring引入Weight的目的是解决未来添加存储能力更大的Node时,分配到更多的Partition。例如,2TB容量的Node的Partition数为1TB的两倍,那么就可以设置2TB的Weight为200,而1TB的为100。 图4 一种Swift部署集群 实例分析 图4中是新浪SAE在测试环境中部署的Swift集群,集群中又分为5个Zone,每个Zone是一台存储服务器,每台服务器上由12块2TB的SATA磁盘组成,只有操作系统安装盘需要RAID,其他盘作为存储节点,不需要RAID。前面提到过,Swift采用完全对称的系统架构,在这个部署案例中得到了很好的体现。图4中每个存储服务器的角色是完全对等的,系统配置完全一样,均安装了所有Swift服务软件包,如Proxy Server、Container Server和Account Server等。上面的负载均衡(Load Balancer)并不属于Swift的软件包,出于安全和性能的考虑,一般会在业务之前挡一层负载均衡设备。当然可以去掉这层代理,让Proxy Server直接接收用户的请求,但这可能不太适合在生产环境中使用。 图4中分别表示了上传文件PUT和下载文件GET请求的数据流,两个请求操作的是同一个对象。上传文件时,PUT请求通过负载均衡随机挑选一台Proxy Server,将请求转发到后者,后者通过查询本地的Ring文件,选择3个不同Zone中的后端来存储这个文件,然后同时将该文件向这三个存储节点发送文件。这个过程需要满足NWR策略(Quorum Protocol),即3份存储,写成功的份数必须大于3/2,即必须保证至少2份数据写成功,再给用户返回文件写成功的消息。下载文件时,GET请求也通过负载均衡随机挑选一台Proxy Server,后者上的Ring文件能查询到这个文件存储在哪三个节点中,然后同时去向后端查询,至少有2个存储节点“表示”可以提供该文件,然后Proxy Server从中选择一个节点下载文件。 小结 Swift简单、冗余、可扩展的架构设计保证了它能够用于IaaS的基础服务。在Rackspace Cloud Files服务两年的运行积累使得Swift代码变得越来越成熟,目前已部署在全球各地的公有云、私有云服务中。随着OpenStack的不断完善和发展,Swift将得到更广泛的应用。 |